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Abstract
We find a new representation of all boundary conditions corresponding to the
so-called point interactions. We show that there is one-to-one correspondence
between one-dimensional point interactions and boundary conditions of the
form

u′(0+) + iu(0+) = ηα(u′(0+) − iu(0+)) − ηβ̄(u′(0−) + iu(0−))
u′(0−) − iu(0−) = ηβ(u′(0+) − iu(0+)) + ηᾱ(u′(0−) + iu(0−))

with α, β, η ∈ C satisfying |η| = |α|2 + |β|2 = 1.

PACS numbers: 0365, 0230T

AMS classification scheme numbers: Primary 1Q10; Secondary 47E058

1. Introduction

The aim of this short paper is to find a representation of all point interactions for a one-
dimensional Laplacian in terms of boundary conditions. It is well known that this is possible
theoretically, see [17, theorem 4.7], yet the known representations lack a certain kind of
concreteness.

We begin with the following example, see [4]. Consider a symmetric operator A defined
on H := L2(R,C2) by

D(A) = C∞
0 (R \ {0},C2) (1.1)

Af = 1

i

(
1 0
0 −1

)
df

dx
f ∈ D(A). (1.2)

Note that D(A) is dense in H. The proof of the following is standard.

Lemma 1.1. D(A∗), the domain of the adjoint operator to A, consists of all elements u of H

such that the restrictions of the weak derivativeDu to the intervals (0,∞) and (−∞, 0) belong
to the corresponding L2 space. In other words, u ∈ D(A∗) iff u ∈ H and u− := 1(−∞,0)u and
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u+ := 1(0,∞)u are absolutely continuous on (−∞, 0) and (0,∞), and their derivatives belong
to the corresponding L2 spaces.

In particular, for each u ∈ D(A∗), the following limits make sense:

lim
s↗0

u(s) =: u(0−) ∈ C
2 (1.3)

lim
s↘0

u(s) =: u(0+) ∈ C
2. (1.4)

By a standard integration by parts formula for absolutely continuous functions we derive
from lemma 1.1 the following Green formula for the operator A.

Lemma 1.2. If f, g ∈ D(A∗) then

〈A∗f, g〉 − 〈f,A∗g〉 = 1

i
[〈δ2f, δ2g〉 − 〈δ1f, δ1g〉] (1.5)

where δ1, δ2 : D(A∗) → C
2 are defined by (with f = (u, v))

δ1f =
(
u(0+)

v(0−)

)
δ2f =

(
u(0−)
v(0+)

)
. (1.6)

The Green formula (1.5) can be used to characterize all possible self-adjoint extensions
of the operator A. First of all one has:

Proposition 1.3. If � : C
2 → C

2 is linear and unitary, then the operator L = L� defined by

D(L) := {
f ∈ D(A∗) : δ2f = �δ1f

}
(1.7)

Lf := A∗f f ∈ D(L) (1.8)

is self-adjoint.

In fact the family L� from proposition 1.3 constitutes the whole class of self-adjoint
extensions of A. The following results are crucial steps in proving that fact.

Lemma 1.4. The following maps:

δ̂1 := δ1|D(A∗)∩ker(δ2) : D(A∗) ∩ ker(δ2) → C
2 (1.9)

δ̂2 := δ2|D(A∗)∩ker(δ1) : D(A∗) ∩ ker(δ1) → C
2 (1.10)

are onto.

Proof. The proof is obvious from (1.6). �

Lemma 1.5.

D(A) ⊂ ker δ1 ∩ ker δ2. (1.11)

The following is a consequence of the previous lemma.

Lemma 1.6. If L is any self-adjoint extension of A, then the maps δi , i = 1, 2, restricted to
D(L), map the latter onto C

2.

We finish with:

Theorem 1.7. If L is a self-adjoint extension of A then one can find a unitary operator
� : C

2 → C
2 such that L = L� .
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There are many different ways to characterize all self-adjoint extensions of a symmetric
operator (when such extensions exist). In von Neumann’s approach [16, theorem X.2] (see
also [1]), one indexes self-adjoint extensions by unitary maps from one deficiency subspace
K+ = ker(iI − A∗) onto the other K− = ker(iI + A∗). For the operator above,

K+ = span

{( √
2e−x1(0,∞)

0

)
,

(
0√

2ex1(−∞,0)

)}
(1.12)

K− = span

{( √
2ex1(−∞,0)

0

)
,

(
0√

2e−x1(0,∞)

)}
. (1.13)

Let {u+, v+} be the orthonormal basis (1.12) of K+ and {u−, v−} the orthonormal basis (1.13)
of K−. Then unitary maps � : C

2 → C
2 correspond to unitary maps

c1u+ + c2v+ �−→
(
�

(
c1

c2

))
1

u− +

(
�

(
c1

c2

))
2

v− c1, c2 ∈ C

from the two-dimensional subspace K+ onto K− and the self-adjoint extension A� of A

corresponding to � is given by

D(A�) = {
φ + φc + ψc : φ ∈ D(A), c ∈ C

2
}

where φc = c1u+ + c2v+ and ψc = (�c)1 u− + (�c)2 v−
A�(φ + φc + ψc) = A∗φ + iφc − iψc for all φ ∈ D(A) c ∈ C

2.

If we denote by D(A) the domain of the closure A of A, then it is known from [17, theorem
3.8] that D(A) is the collection of all functions f ∈ D(A∗) with f (0+) = f (0−) = 0 and the
operator A is the restriction of A∗ to the linear subspace D(A) of D(A∗). A calculation shows
that A� = L� .

A general approach to characterizing self-adjoint extensions in terms of boundary
conditions is treated in [17, theorem 4.7]. If for each u, v ∈ D(A∗) we set

[u, v]x = i (u0(x)v0(x) − u1(x)v1(x))

= i
(
v0(x),−v1(x)

) (
u0(x)

u1(x)

)

for x = 0+ or x = 0−, then every self-adjoint extension of A is determined by vectors
αj = (αj,0, αj,1) and βj = (βj,0, βj,1) in C

2 for j = 1, 2, such that the two vectors
(αj,0, αj,1, βj,0, βj,1), j = 1, 2, in C

4 are linearly independent and

[αj , αk] = [βj , βk] (1.14)

for each j, k = 1, 2. Then the corresponding self-adjoint extension of A is given by the
restriction of A∗ to the linear subspace of all f ∈ D(A∗) such that

[f, αj ]0− = [f, βj ]0+ for each j = 1, 2. (1.15)

If we set

M =
(
α1,0 α2,0

β1,1 β2,1

)
and N =

(
β1,0 β2,0

α1,1 α2,1

)

then the compatibility condition (1.14) becomes M∗M = N∗N and the boundary
condition (1.15) reads as

M∗
(
u(0−)
v(0+)

)
= N∗

(
u(0+)

v(0−)

)
for f = (u, v).

It turns out that M is invertible and (M∗)−1N∗ = MN−1 is precisely the unitary matrix �

given in equation (1.7).
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Although we are led to the same self-adjoint extension by each method, the boundary
condition (1.7) has a natural interpretation in terms of conservation of energy as travelling
waves move across the origin, so that the evolution t �→ eitL� forms a continuous unitary
group of operators. A simpler example is discussed from this viewpoint in [16, pp 142–3].

2. The main result

Motivated by the previous example we will now formulate an abstract result which will then
be used to study all point interactions of a one-dimensional Laplacian.

Theorem 2.1. Suppose H is a complex Hilbert space and A is a densely defined symmetric
operator in H . Suppose that G is another Hilbert space and γi : D(A∗) → G for i = 1, 2,
are two linear bounded operators satisfying the following conditions:

(i) D(A) ⊂ ker γ1 ∩ ker γ2;
(ii) the restrictions of γ1 and resp. γ2 to D(A∗) ∩ ker γ2, resp. D(A∗) ∩ ker γ1, are onto,

and the following Green formula:

〈A∗f, g〉 − 〈f,A∗g〉 = i
[〈γ2f, γ2g〉 − 〈γ1f, γ1g〉] (2.1)

holds for all f, g ∈ D(A∗).
Then, for any unitary map � : G → G, the operator L = L� defined by

D(L�) := {
f ∈ D(A∗) : γ2f = �γ1f

}
(2.2)

L�f := A∗f f ∈ D(L�) (2.3)

is self-adjoint.
Moreover, if L is a self-adjoint extension of A then one can find a unitary operator

� : G → G such that L = L� .

The above stated result is a classical one and its origins can be traced to a seminal
paper by Calkin [5], see also [9, theorem XII.4.31], Fulton [10], Crandall–Phillips [7] and
Kochubei [14]. The point of this paper is to show that it pays to choose the Hilbert space G

and maps γj : D(A∗) → G appropriately.
Now let H = L2(a, b; C), where −∞ < a < b < ∞, and let A be a symmetric operator

in H defined by

D(A) = C∞
0 ((a, b),C) (2.4)

Af = −d2f

dx2
f ∈ D(A). (2.5)

The standard Green formula is of the following form:

〈A∗f, g〉 − 〈f,A∗g〉 = u′(b)v̄(b) − u(b)v̄′(b) − [
u′(a)v̄(a) − u(a)v̄′(a)

]
(2.6)

for all f, g ∈ D(A∗). Let us recall at this point the well known fact that D(A∗) equals the
Sobolev space H 2,2(a, b; C) of all functions from L2(a, b; C) whose weak derivative up to
order 2 belongs to L2(a, b; C) as well. Equivalently, f ∈ D(A∗) iff f is of C1 class on the
closed interval [a, b] and its first derivative f ′ is absolutely continuous with f ′′ belonging to
L2(a, b; C). Whatever the form, it follows that the maps δa , δb, δ′

a , δ′
b from D(A∗) into C

defined by f �→ f (a), f (b), f ′(a) and f ′(b) are linear and bounded.
The problem with formula (2.6) is that it is not of the form (2.1). For example, it contains

four terms instead of the two required. Fortunately the following two simple identities hold,
again for all u, v ∈ D(A∗)(
u′(b) + iu(b)

) (
v̄′(b) − iv̄(b)

) − (
u′(b) − iu(b)

) (
v̄′(b) + iv̄(b)

)
= − 2i

[
u′(b)v̄(b) − u(b)v̄′(b)

]
(2.7)
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and, analogously at a(
u′(a) + iu(a)

) (
v̄′(a) − iv̄(a)

) − (
u′(a) − iu(a)

) (
v̄′(a) + iv̄(a)

)
= − 2i

[
u′(a)v̄(a) − u(a)v̄′(a)

]
. (2.8)

Therefore, defining functions γi : D(A∗) → C
2, for i = 1, 2, by

γ1u =
(
u′(b) − iu(b)
u′(a) + iu(a)

)

γ2u =
(
u′(b) + iu(b)
u′(a) − iu(a)

) (2.9)

for u ∈ D(A∗), we have

Lemma 2.2. If u, v ∈ D(A∗) then

〈A∗u, v〉 − 〈u,A∗v〉 = i

2

[〈γ2u, γ2v〉 − 〈γ1u, γ1v〉
]
. (2.10)

We are going to check the remaining two conditions of theorem 1.7. Obviously the first of
them (i.e. (i)) holds true. We show the second. Using a partition of unity it is enough to show
that for any z ∈ C there exists a C2 class function u : [a, b] → C such that u′(a) − iu(a) = 0
and u′(a) + iu(a) = z. Certainly, there exists a function u of required regularity such that
u′(a) = z

2 and u(a) = − iz
2 . Therefore, applying theorem 2.1 we obtain the following main

result of our paper.

Theorem 2.3. Each self-adjoint extension of the operator A is of the following form: for some
unitary operator � : C

2 → C
2,

D(L�) := {
u ∈ H 2,2(a, b; C) : γ2u = �γ1u

}
(2.11)

L�f := −d2f

dx2
f ∈ D(L�). (2.12)

Remark. If we take the orthonormal basis(
2

1
4 e

1−i√
2
x1(−∞,0), 2

1
4 e− 1−i√

2
x1(0,∞)

)
of the deficiency subspace ker(iI − A∗) and the orthonormal basis(

2
1
4 e

1+i√
2
x1(−∞,0), 2

1
4 e− 1+i√

2
x1(0,∞)

)
of the other deficiency subspace ker(iI +A∗), then on application of [9, theorem XII.4.31] the
maps (2.9) are replaced by

γ ′
1u =

(
u′(b) + e−i π4 u(b)

u′(a) − e−i π4 u(a)

)

γ ′
2u =

(
u′(b) + ei π4 u(b)

u′(a) − ei π4 u(a)

)
.

(2.13)

The maps (2.9) are defined by a simpler formula than (2.13).
In fact, if we take any z ∈ C with non-zero imaginary part, and define the maps

γ1(z)u =
(
u′(b) + zu(b)

u′(a) − zu(a)

)

γ2(z)u =
(
u′(b) + zu(b)

u′(a) − zu(a)

)

then we obtain all self-adjoint extensions of A in the analogous manner. The maps (2.9) are
obtained simply by taking z = i.
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Examples

In the following the unitary maps � : C
2 → C

2 are expressed by matrices in the canonical
basis of C

2.
We begin with � = (1 0

0 1

)
. Easy calculations show that in this case the boundary

conditions (2.11) take the form

u(a) = u(b) = 0

i.e. of Dirichlet.
If � = ( 1 0

0 −1

)
, the boundary conditions in (2.11) take the form

u′(a) = u(b) = 0.

The matrix � = (−1 0
0 −1

)
corresponds to the Neumann boundary conditions

u′(a) = u′(b) = 0.

3. Comments

The so-called point interactions are the self-adjoint extensions of the following modification
of the operator A from the last section. Now let H = L2(R; C) and A be a symmetric operator
in H defined by

D(A) = C∞
0 (R \ {0},C) (3.1)

Af = −d2f

dx2
f ∈ D(A). (3.2)

It is indeed well known that A is a densely defined symmetric operator in H and that its
deficiency index is (2, 2). Chernoff and Hughes [6], see also [2, 3, 8, 12, 13, 15], describe all
self-adjoint extensions of the operator A by means of the following boundary conditions

u(0+) = ωau(0−) + ωbu′(0−)
u′(0+) = ωcu(0−) + ωdu′(0−)

(3.3)

where ω ∈ C; a, b, c, d ∈ R ∪ {∞}, satisfy |ω| = 1 and ad − bc = 1. Three cases are
classical. b = c = 0 corresponds to the Friedrichs extension of A, b = ∞, c = 0 corresponds
to the Neumann boundary conditions and c = ∞, b = 0 corresponds to the Dirichlet boundary
conditions. In this case our boundary conditions read(

u′(0+) + iu(0+)

u′(0−) − iu(0−)

)
=

(
α β

γ δ

) (
u′(0+) − iu(0+)

u′(0−) + iu(0−)

)
(3.4)

where � = (
α β

γ δ

)
is a 2 × 2 unitary matrix.

Since any unitary matrix is of the form η
(
α −β̄

β ᾱ

)
, α, β, η ∈ C, |η| = |α|2 + |β|2 = 1, the

latter take the form
u′(0+) + iu(0+) = ηα(u′(0+) − iu(0+)) − ηβ̄(u′(0−) + iu(0−))
u′(0−) − iu(0−) = ηβ(u′(0+) − iu(0+)) + ηᾱ(u′(0−) + iu(0−)).

(3.5)

Comparing our boundary conditions with (3.3) we see that ours are somehow more
natural. In particular, we do not require any of the coefficients to be equal to ∞. These
different characterizations can be explained in different parameterizations of the unitary group
U(2). From the point of view of quantum mechanics, we have represented the probability
flux across zero of a state ψ in the domain of a possible Hamiltonian operator as a constant
times |γ2ψ |2 − |γ1ψ |2. As noted earlier, there are many possible ways to achieve this
representation. Hence, Hamiltonian operators H� are in one-to-one correspondence with
unitary maps � : C

2 → C
2 such that γ2ψ = �γ1ψ , so that total probability is conserved, i.e.

e−itH� is a unitary operator for all times t ∈ R.
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[4] Benvegnù S 1997 Relativistic point interaction with Coulomb potential in one dimension J. Math. Phys. 38

556–70
[5] Calkin J 1939 Abstract symmetric boundary conditions Trans. Am. Math. Soc. 38 369–442
[6] Chernoff P and Hughes R 1993 A new class of point interactions in one dimension J. Funct. Anal. 111 97–117
[7] Crandall M G and Phillips R S 1968 On the extension problem for dissipative operators J. Funct. Anal. 2 147–76
[8] Da̧browski L and Grosse H 1985 Nonlocal point interactions in one, two and three dimensions J. Math. Phys.

26 2777
[9] Dunford N and Schwartz J T 1963 Linear Operators vol 2 (New York: Interscience)

[10] Fulton C T 1977 Two-point boundary value problems with eigenvalue parameter contained in the boundary
conditions Proc. R. Soc. Edinburgh A 77 293–308

[11] Gesztesy F and Kirsch W 1985 One-dimensional Schrödinger operators with singular interactions on a discrete
set J. Reine Angew. Math. 362 28–50
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